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Abstract. We introduce a new mechanism—the forget-remember mechanism into the spreading process.
Equipped with such a mechanism an individual is prone to forget the “message” received and remember the
one forgotten, namely switching his state between active (with message) and inactive (without message).
The probability of state switch is governed by linear or exponential forget-remember functions of history
time which is measured by the time elapsed since the most recent state change. Our extensive simulations
reveal that the forget-remember mechanism has significant effects on the saturation of message spreading,
and may even lead to a termination of spreading under certain conditions. This finding may shed some
light on how to control the spreading of epidemics. It is found that percolation-like phase transitions can
occur. By investigating the properties of clusters, formed by connected, active individuals, we may be able
to justify the existence of such phase transitions.

PACS. 89.75.Fb Structures and organization in complex systems – 89.70.+c Information theory and
communication theory – 89.75.Hc Networks and genealogical trees

1 Introduction

The spreading process, through which news, rumors and
diseases, etc., can be transmitted, is ubiquitous in nature
[1–3]. Recent research along this topic has been largely fo-
cused on the modelling of epidemics [4–10] and its inter-
play with biological interactions, which has yielded many
valuable and interesting results [11,12]. Some of these
models studied have attracted the attention of epidemiol-
ogists [13–18]. Furthermore, it has been pointed out that
epidemiological processes can be related to the well-known
percolation [8,19–23]. In some other models [24–29], the
epidemic spreading has been fully analyzed on different
types of networks to see its dependence on spatial effects.

In this paper, we employ the general term “message”
to refer to any object that can be transmitted in various
spreading processes. Henceforth, in this sense, types of
messages are very diverse, from computer viruses, e-mail,
rumors, to forest fires and contagious diseases (such as flu)
and so on and so forth [13,30]. Most spreading processes
share the following common features: (i) Messages may
not only be spread, but be “forgotten” and “remembered”.
In the whole context of this paper “forgotten” and “re-
membered” are also general terms. If the message means
disease, then “forgotten” is equivalent to “recovered” and
“remembered,” “reinfected.” (ii) Each member within a
message-spreading system could be at either of the two
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states, having a message or not. If he has a message, an
individual is opted to transmit it or not; otherwise, he can
accept or decline a message from others. Altogether there
can be four possible states for each individual, which are
not totally included by most models. For example, the SIS
model for epidemics assumes that each individual is either
susceptible or infective [31]. The SIR model adds a third
one [32,33]—the removed state (the message is lost and the
individual never accepts the message ever again). Take the
smallpox spreading as an example [34]. A healthy human
being who never got this disease is in the susceptible state.
His state will turn into infective once he is infected by the
disease for the very first time. Right after his recovery,
he will never be infected by the smallpox again since he
has acquired the immunity against it. From this example
we see clearly the state transition from susceptible to in-
fective and to removed. (iii) Normally the spreading rate,
which determines how quickly a specific message can be
transmitted, is quite limited.

Here we propose the forget-remember mechanism, re-
alized by respective probability functions which measure
in a quantitative way how the message can be forgotten
and remembered, to study the message spreading in a 2-
state model. One state is active (with message) and an-
other, inactive (without message). We can simply use “1”
to represent the active state and “0”, the inactive one. We
will focus on the effects of the forget-remember mechanism
(FRM) on the efficiency of message spreading. Namely,
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under what conditions can a message be spread to all (or
most of ) the members of the population? By varying the
parameters of the forget- and remember function, are we
able to prevent a message from spreading at its infancy?
If yes, what can we learn from it? The answers of the
above questions are important and relevant in studying
the breakout and the control of epidemics.

2 The forget-remember mechanism
and the model

In most previous studies of spreading processes the most
important parameter — the effective spreading rate, de-
termines not only the percentage of active individuals, but
whether a message will quickly become popular like an epi-
demic [32,33]. Here we take a different way by relating the
message spreading to the learning process. In the message
spreading, individuals forget and remember messages as
time elapses. For example, humans infected with diseases
like the flu, can recover even without taking any medica-
tion, but the disease can also reoccur after a certain period
of time. Normally, the longer a person holds a message,
the greater the probability he will lose it, and the less the
probability he will remember it after a longer time. This
feature also applies to the well-known learning curve dis-
covered by German experimental psychologist Hermann
Ebbinghaus [35,36]. The similarities between the learning
curve and the FRM suggest that the former could be a
guide to understanding the latter.

Our FRM is described as follows.
(i) Forget mechanism—when he holds a message, an indi-

vidual may forget it with probability P−(t), a function
of history time t. We assume that the longer a mes-
sage is held, the more easily it will be forgotten by its
owner.

(ii) Remember mechanism—a forgotten message can be
remembered, with probability P+(t), also a function
of time t.

(iii) The forget mechanism can be independent of the re-
member mechanism, but the latter must rely on the
former. Here previous history of states counts in that
an individual who never experienced a forget-process
would not remember any message.

(iv) The history time t appeared in both P−(t) and P+(t)
is different from the system time T , because the for-
mer is directly related to individual’s previous states
(the notions of T and t are universal in the whole text
without any specific explanation). t is defined as the
time elapsed since the individual’s most recent state
switch. Hence for the forget mechanism, t starts count-
ing when a message is received; while for the remember
mechanism, it starts when a message is forgotten.
In order to gain further insight into the FRM, we con-

sider the linear form for both P−(t) and P+(t) (Eq. (1))
with parameters a and b, and the exponential one for
them, with parameters α and β.

The linear function is simply

P∓(t) = a ± bt (1)

and the exponential one is

P∓(t) = α ∓ e−βt (2)

In our simulations, parameters b and β are chosen to be
no less than zero. The probability functions must take
values between 0 and 1, so the range of the parameters
is accommodated accordingly (please refer to Fig. 1 for
more details). When both b and β are equal to zero, the
probability functions become uniform distributions. a and
α ∓ 1 are the initial values of the probability functions,
which could represent the importance of the message in
the rumor spreading process, or the initial probability of
self-cure and relapse in epidemics. b and β, which deter-
mine the shapes of two functions, can be regarded as the
forget- and remember speed. Namely, b and β show how
quickly a message can be forgotten and/or remembered.

Table 1, which shows the main correspondence of the
standard SIS and SIR with the corresponding message
spreading forget-remember mechanism, may be utilized
to understand the FRM.

Our model which incorporates the FRM is based on a
scale-free network, to which most social networks, includ-
ing spreading networks, belong. The degree distribution of
the standard Barabási-Albert (BA) scale-free network is a
power-law, P (k) ∼ k−γ , with exponent γ ranged between
2 and 3 [30,37]. Therefore we build a standard BA scale-
free network of N = 10000 with average degree 〈k〉 = 4
and exponent γ = 2.7.

Now we address the issue of how a message can be
spread in our model. The initial condition is that each indi-
vidual in the network has the equal chance to be “infected”
by an in-coming message, with a very small probability
PA. For instance, if PA is taken to be 0.005, then around
50 nodes are initially activated and the rest ones remain
inactive. Choosing this tiny probability is reasonable when
one takes the epidemics as an example: at the infancy of an
epidemic only a very small fraction of the population is in-
fected. Furthermore, to initialize the spreading we assume
that an individual who is inactive can be activated by his
active neighbors with transmission probability ν for each,
which is set to be very small in most of our simulations.
One might think that the interaction is very weak due to
ν being small. This is not always true when one consid-
ers the way that each individual is connected. In a scale-
free network, the hubs may have several hundred nearest
neighbors, so they can be more easily infected, which en-
hances the chance for a message to spread further away.
This also makes sense in the case of an epidemic, where
the population size is of the magnitude of million. In the
absence of the FRM, the message will diffuse to the whole
system in a very prompt way. Now we introduce the forget
mechanism, i.e., an individual who is active may change
his state into inactive according to the probability function
P−(t). If there is only forget mechanism, then the message
may stop spreading eventually or does not spread in an
efficient manner. So we need to incorporate the remember
mechanism, characterized by P+(t). The value of P+(t)
gives the probability that at time t an inactive individual
changes his state to active. We shall bear in mind that the
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Fig. 1. Probability functions for the forget-remember mechanism. P−(t) is the probability for the forget mechanism while P+(t)
is the one for the remember mechanism, with both being ranged between 0 and 1. The left two panels correspond to the linear
form, and the right two panels, the exponential one.

Table 1. The main correspondence of the standard SIS and SIR with the corresponding message spreading forget-remember
mechanism

�������������Items
Models

SIS model SIR model our model with the FRM

Number of individual’s states 2 3 2
Probability of states’ switch constants constants variable via probability functions
Means of message spreading via neighbors via neighbors via neighbors or remember mechanism

Means of message losing self-recovery self-recovery via forget mechanism
Transformation to SIS model / without the removed state constant forget probability
Transformation to SIR model including the removed state / no remember mechanism

activation of an inactive node is co-determined by the in-
teraction (ν) and the remember mechanism (P+(t)). This
is why we need to have small ν since the effects of the
remember mechanism might be covered at higher ν.

We use Si(T ) to denote the state of individual i at a
give time T . According to our definition, Si(T ) can only
take two distinct values, either 1 or 0. Due to the existence
of the FRM, the states evolution of the whole system is
complex. In order for one to get to know our model more
clearly, let us follow the state change of individual i at any
given time T .

1. If the state of i at T is Si(T ) = 1, then i changes his
state to Si(T + 1) = 0 with probability P−(T − T i

0,1),
where T i

0,1 is the most recent time when i changes his
state from 0 to 1. Now two consequences: Si(T +1) = 0
or Si(T +1) = 1. If the former holds, then he starts to
remember the message at time T + 1, or equivalently
his remember time t starts counting at T +1; otherwise
he still remains active at time T +1 but his forget time
is extended by 1.

2. If the state of i at T is Si(T ) = 0, i will calculate the
total number of its active nearest neighbors. If that
number is Ai(T ), then i changes his states to Si(T +
1) = 1 with probability Ai(T )ν. If i is activated, then

Si(T + 1) = 1; otherwise i still needs to consider the
following two cases:
(a) If i has no history of being active then Si(T +1) =

0.
(b) If i has the history of being active, then he needs to

recall the most recent time T i
1,0 when his state was

switched from 1 to 0. He can remember the mes-
sage with probability P+(T − T i

1,0). If he success-
fully remembers the message, then Si(T + 1) = 1;
otherwise Si(T + 1) = 0.

As we can see that the dynamics of the system is in-
teresting and very complex, mainly due to the existence
of the FRM. The system is mainly driven by the com-
petition between the forget- and remember mechanism. If
the former prevails, there is great chance that the message
may die out at some final moment. On the contrary, the
message can be further spread.

3 Results and discussions

The effects of the above forms of forget- and remem-
ber functions on spreading can be well demonstrated by
computing a quantity, D(T ), the percentage of active in-
dividuals. As shown in Figures 2 and 4, the dependence
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of D(T ) on T is sensitive to parameters a, b, α and β.
We have actually run numerous simulations by spanning
the wide range of a large parameter space, which more
or less display similar trends to those given by Figures 2
and 4 [38]. First we come to Figure 2, which corresponds
to the case where the forget probability can vary expo-
nentially and the remember probability is fixed to be 0.1.
The below are the observations for this part: (i) Gener-
ally D(T ) will saturate or reach a stationary value after
a certain number of time steps, say, around 2000. This
indicates that the convergence to the stationary states is
quick. (ii) The stationary value of D(T ), denoted by Ds,
for the case without the remember mechanism, Ds2, is
much smaller than its counterpart with, Ds1. This means
that the existence of the remember mechanism will be an
advantage for message spreading, which is obvious. But
quantitatively we know how large the difference, namely
∆Ds = Ds1 − Ds2, is. For example, when α = 1 and
β = 0.001, the difference is around 0.2. For α = 1 and
β = 0.01, the difference is 0.72. More simulations show
the dependence of ∆Ds on β, which is a curve of first
rapid increase and then slow variation. It can be seen from
Figure 3 when the remember mechanism is included, Ds1

decreases almost linearly with β; otherwise Ds2 decreases
exponentially with β. (iii) The saturation time Tc, namely
the time step when ∂D(Tc)/∂Tc = 0, is nearly indepen-
dent of parameter β. (iV) When α = 1 and β is as large
as 0.05, the spreading of the message comes to a halt at a
very early stage.

The simulations of the situation in which the remem-
ber probability varies and the forget probability is fixed
to be 0.1 are given in Figure 4. Here are some observa-
tions: (i) The increase of a, with fixed b, will accelerate
the message spreading, which eventually results in the in-
crease of Ds. For example, Ds is 0.1, 0.3, 0.5, 0.82 and 0.9
for a = 0.01, 0.05, 0.1, 0.5 and 1, respectively. This indi-
cates that parameter a plays a positive role in the message
spreading. (ii) There are certain cases where the message
can still be spread but not as effectively as in other cases.
For example: when a = 0.01 and b = 0.001, Ds is as low
as 0.1, namely, 10 percent of the population is infected.
But we shall keep in mind that this percentage is still
considerable when we are dealing with an epidemic.

Let us now analyze how the above observations may
provide hints to help prevent an epidemic from breaking
out. As we notice that if there is no remember mecha-
nism and the forget probability function is 1−e−0.05t, the
spreading will be terminated at the very beginning. First,
this means that vaccination (of course for vaccinable dis-
eases) is important. By vaccination you can greatly reduce
the “remember mechanism”, which protects you from be-
ing “infected” by that same disease. The forget speed 0.05
then suggests it is better to cure a disease as quickly as
possible. Otherwise, the prolongation of its cure duration
may enhance the risk of spreading it to others. Second,
some diseases like flu may not be vaccinable so can be re-
infected. And its cure duration may usually take a while
such as weeks, which can be corresponding to the fixed
forget probability in Figure 2. Therefore it is wise to get

Fig. 2. D(T ), the percentage of active individuals, versus sys-
tem time step T , with transmission probability ν = 0.002. The
system size is 10,000. The solid curves correspond to the sim-
ulations with fixed remember probability P+ = 0.1, while the
dashed ones display those without remember effects. Here, the
forget function takes the exponential form with α = 1 and β =
0.001, 0.005, 0.01, 0.03 and 0.05 (from top to bottom).

Fig. 3. The stationary values of D(T ), calculated from the
curves in Figure 2, versus β. The round data points represent
Ds1 for the case with the remember mechanism, and the square
ones represent Ds2 for the one without.

Fig. 4. D(T ) versus system time step T with remember func-
tion taking the linear form with b = 0.001 and a = 0.01, 0.05,
0.1, 0.5 or 1 (from bottom to top), forget probability P− = 0.1
and transmission probability ν = 0.002. The system size is
10,000.

less contact with patients. It would not be difficult to un-
derstand that quarantine of the active hubs (the ill person
who have many acquaintances) may be an efficient way to
prevent an epidemic.

In our model the stationary state, where D(T ) re-
mains nearly constant, can always be reached however
we vary the parameters. Figure 5 exhibits the relation-
ship between Ds and both parameters a and b, where the
simulations were performed under the condition of
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Fig. 5. Ds versus parameters a and b, where the forget prob-
ability is 0.1, ν is 0.002, and the remember function is linear:
P+(t) = a − bt.

P−(t) = 0.1, P+(t) = a − bt and ν = 0.002. The value
of Ds first increases with a very rapidly and then is sta-
bilized. Ds can span the whole range between 0 and 1 as
parameters are varied. That is to say, the FRM injects
significant effects into the spreading process.

To display more clearly the tendency of Ds versus both
parameters a and b, we chose one special case among the
results shown in Figure 5, where b is 0.001 and a can be
varied. Figure 6 clearly implies a transition at a certain
value of ac, below which there is null activity and above
which the spreading persists.

It can be inferred that the system can also switch from
a more complex phase to a simpler one. In the more com-
plex phase, individuals, no matter active or inactive, are
scattered and intermingled. In the simpler phase, nearly
all individuals are active and form a very huge cluster. We
will now briefly explain why such a switch can occur. As
already stated in the previous section, the spreading of a
message or not is now mainly determined by the compe-
tition between the forget mechanism and the remember
mechanism plus the transmission probability ν. When the
former mechanism overcomes the sum of the latter two,
the spreading can be terminated or is at least not that
efficient. On the contrary the message will be spread to
far away. Take the linear forget-remember function as an
example, when a = 1 one will definitely remember a mes-
sage before the remember probability decays. The forget
probability is always 0.1. Henceforth at a = 1, the effect
caused by the remember mechanism plus the transmission
probability is stronger than the one caused by the forget
mechanism alone, due to which the spreading is efficient.

We also investigated the influence of system size N on
Ds, other conditions being equal. The results show that
the effect of the system size is not significant especially as
N grows. As indicated in Figure 7, under the conditions of
P−(t) = 0.1, P+(t) = a− 0.001t and ν = 0.002, the three-
dimensional figure (Fig. 7) displays the variation of Ds

versus both parameters a (from 0 to 1.4) and N (from 1000
to 10000). When N is fixed, Ds increases quickly (from 0
to 0.9) with a’s increasing (from 0 to 1). When a equals
1, Ds reaches the saturated value and is nearly constant

Fig. 6. Ds versus parameter a, where the forget probability
is fixed to be 0.1, ν is 0.002, and the remember function is of
linear form: P+(t) = a − 0.001t.

Fig. 7. (a) Ds versus both system size N and a, where the
forget probability is 0.1, ν is 0.002, and the remember function
is linear: P+(t) = a − 0.001t. (b) The projection of (a) on the
coordinate of N . Here, a is fixed for each curve and takes 0.2,
0.4, 0.6, 0.8 and 1 for different curves (from top to bottom).

when a > 1. Figure 7a also shows that Ds does not change
drastically with N when a is fixed. This phenomenon is
more clearly demonstrated in Figure 7b, where the vari-
ation of Ds versus N was given, when a =0.2, 0.4, 0.6,
0.8 and 1 (from bottom to the top). We find that Ds for
smaller N (N ≤ 3000) is slightly smaller than its counter-
part for larger N (N > 3000). But this difference becomes
vanishing as N grows. For example, when N > 3000, Ds

maintains a steady value of 0.8 for a = 0.4. The system
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Fig. 8. Ds versus different transmission probabilities ν, with
N = 10000. From top to bottom, the curves display the
simulations under P−(t) = 1 − e−0.03t, P+(t) = 0.1 and
P+(t) = 0.01 − 0.001t, P−(t) = 0.1.

size N of our major simulations is 10000, so the finite-size
effect is almost negligible.

We performed ensemble analysis of our model via sim-
ulations of different network realizations. We found as N
is large enough, there is no significant difference between
the outcomes of different realizations. For accuracy, our
major results were averaged over 10 different network re-
alizations.

In the message spreading, it is very obvious that the
transmission probability ν has a significant effect on Ds.
Figure 8 shows the variation of Ds with ν through simula-
tions under the conditions of P−(t) = 1− e−0.03t, P+(t) =
0.1 (top curve)and P−(t) = 0.1, P+(t) = 0.01 − 0.001t
(bottom curve). The larger ν is, the larger Ds will be. For
example, Ds is 0.5 for ν = 0.05, and 0.7 for ν = 0.2, for
the bottom curve. Hence the choice of ν should be careful,
for if it is too small (close to zero), it will restrict the mes-
sage spreading. But if it is too large the message spreads
too quickly and the effects of the FRM will be covered. In
most of our simulations ν is set to be 0.002.

The influence of initial conditions PA, defined as the
percentage of initially activated nodes, was also considered
in our simulations. The results show that PA has no sig-
nificant influence on the message spreading provided PA is
not within the regime adjacent to zero. For example, with
ν = 0.002, P− = 0.1 and P+(t) = a − 0.001t (Fig. 9), Ds

increases rapidly as PA does from 0 to 0.001. However, as
long as PA is chosen to be larger than 0.001, Ds is nearly
independent of PA. In our simulations, we chose PA to be
0.005.

The time scales of the transitions between inactive and
active states are the parameters determining the behavior
of spreading. We define Tc the time for D(T ) reaching
the saturated value Ds for the first time. Take the case of
ν = 0.002, P− = 0.1 and P+(t) = a−0.001t as an example
(Fig. 10), there exists power-law relationship between Tc

and a. It was also found that the exponent of such a power-
law is −0.2, nearly independent of system sizes.

We hereby show the simulations when neither
remember- nor forget probability is constant. Namely, we

Fig. 9. D(T ) versus the percentage of initially activated nodes
PA, with ν = 0.002, P− = 0.1 and P+(t) = a − 0.001(t). The
top curve corresponds to the simulations with a = 0.1, while
the bottom one displays simulations with a = 0.01.

Fig. 10. Tc, the time of D(T ) reaching the saturated value Ds

for the first time, versus parameter a with different system sizes
(N = 1000, 3000, 5000, 8000 and 10000). The forget probability
is 0.1, ν is 0.002, and the remember function is linear: P+(t) =
a − 0.001t.

shall pay attention to the cases in which all the four
parameters a, b, α and β are non-zero variables, de-
spite that the situation is very complicated. Figure 11
displayed the results of 8 sets of different combinations,
including the one where both functions are linear (e.g.
P−(t) = 0.5 + 0.05t and P+(t) = 0.5 − 0.05t), the one
where both are exponential ( e.g. P−(t) = 0.05 − e−0.05t

andP+(t) = 0.05 + e−0.05t), the one where one is linear
and another is exponential (e.g. P+(t) = 0.5 − 0.05t and
P−(t) = 0.05−e−0.05t), and the one where the parameters
are same (e.g. P−(t) = 0.05 − e−0.05t andP+(t) = 0.05 +
e−0.05t) and the one where the parameters are distinct
(e.g. P−(t) = 0.5 + 0.05t and P+(t) = 0.5 − 0.05t). These
simulations, nevertheless, show rather similar trends to
the ones already observed in Figure 2. More detailed anal-
ysis concerning this part will be provided in our next pa-
per.

In order to characterize the phase transition mentioned
above, we consider the clusters that are formed by con-
nected active individuals. The size of a certain cluster
is the number of active individuals within it. The first
quantity of interest is the size distribution of clusters. We
see that in Figure 12a, at small value of a, only small,
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Fig. 11. The time evolution of D(T ) for combinations of dif-
ferent probability functions with ν = 0.002. From top to bot-
tom, the model is simulated under the following conditions:
P−(t) = 0.5 − e−0.05t and P+(t) = 0.5 + e−0.05t; P−(t) =
0.05− e−0.05t and P+(t) = 0.05+ e−0.05t ; P−(t) = 0.5− e−0.05t

and P+(t) = 0.5 − 0.05t; P−(t) = 0.05 − e−0.05t and P+(t) =
0.05 − 0.05t; P−(t) = 0.05 + 0.05t and P+(t) = 0.05 + e−0.05t;
P−(t) = 0.5 + 0.05t and P+(t) = 0.5 + e−0.05t; P−(t) =
0.5 + 0.05t and P+(t) = 0.5 − 0.05t and P−(t) = 0.05 + 0.05t
and P+(t) = 0.05 − 0.05t.

isolated clusters can be formed. As shown in Figure 12b,
“infinite” clusters start to form only after a certain value
of a. This observation is very similar to the percolation,
where below the critical density Pc only small clusters can
be formed and above Pc larger clusters with sizes compa-
rable to the system size come into being. Figures 13a and
b display the variation of the size distributions of clus-
ters with the parameter a. These two panels equivalently
exhibit the transition displayed by Figures 12a and b.

The second quantity of interest is the size of the largest
cluster ever formed, denoted by Smax. Figure 14 shows the
relation between Smax and a, where the data of 5000 steps
were taken after the system reaches a stationary state. We
notice that the value of Smax increases with the increasing
parameter a and becomes stable later on. We note in Fig-
ure 14 that the initial variation of Smax is very steep, which
can be fitted by an exponential function. Correspondingly,
the average size of clusters (excluding the largest cluster)
versus a is now given by Figure 15. We note that initially
〈S〉 is almost a constant, close to 1, with respect to a. After
a surpasses the point a = 0.01, 〈S〉 starts to increase and
finally diverges exponentially (well fitted to 21.6e2.28a).
This may imply that the critical value of a is small for
the parameters used, which needs scrutiny through more
systematic analysis in the future work.

In the previous study of the spreading process, the
epidemic processes in an uncorrelated network possess an
epidemic threshold on the scale-free network, below which
the diseases cannot produce a macroscopic epidemic out-
break [39,40]. Correspondingly in our model, the value of
D(T ) is determined by the parameters of the probability
functions when one fixes the transmission probability ν.
There also exists certain threshold in the FRM. For ex-
ample, when a is as small as 0.001, the message can not
be spread effectively.

Fig. 12. (a) The snapshot of the configuration of a system of
size 200 at a = 0.003. At this stage, only small, isolated clus-
ters exist. Here a cluster is defined as a group of all connected,
active individuals, and its size, the number of individuals in-
volved. (b) The snapshot of the configuration of a system of
size 200 at a = 1. As shown, an “infinite” cluster forms. This
phenomenon is similar to the percolation.

4 Conclusion

In summary, we have presented a simple forget-remember
mechanism for studying the spreading process. We have
investigated how the FRM affects the spreading when we
vary the parameters of the forget- and the remember,
probability function. Our main results are: (i) When the
transmission probability is vanishingly small, the competi-
tion between the forget- and the remember, mechanism is
the main force to drive the system to the stationary state.
When the forget effect prevails, the spreading may not be
efficient mostly. (ii) When there exists remember mecha-
nism in the system, there is great chance for an “epidemic”
to form. When the remember effect is none or weak, the
message may be spread less effectively than it does with
a stronger remember effect. Hence this suggests that by
vaccination or having less contact with the infected indi-
viduals may protect one from being infected. (iii) There
is a phase transition that can be characterized by the di-
vergence of the average size of clusters, formed by active
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Fig. 13. (a) The size distributions of clusters at a = 0.002 and
a = 0.009. We notice that at small a, only small clusters exist
in the system. (b) The size distributions of clusters at a = 0.03
and a = 0.08. We see in the plots that large clusters of size
comparable to the system size, emerge as a increases. This
transition, from the state with only small clusters to the one
with infinite clusters, resembles the percolation. The parameter
a plays the same role as the density P plays in the percolation.

Fig. 14. Smax, the size of the largest cluster appeared, versus
parameter a, with remember function P+(t) = a − 0.001t.

individuals, in the critical regime. (iv) The outcome of our
model is sensitive neither to the system size as long as it
is large enough (> 3000), nor to the initial condition (the
percentage of initially activate nodes). But the outcome is
sensitive to the transmission probability which may cover
the effects of the forget-remember at the larger values.
This indicates that the forget-remember mechanism dom-

Fig. 15. 〈S〉, the average size of clusters, versus a, with re-
member function P+(t) = a − 0.001t.

inates the transmission probability only when the latter is
small enough.

The FRM on the spreading system can help to explain
why different diseases have different saturation values in
a population, and we hope this mechanism can be well
applied to solving practical problems. For example, if im-
munity in humans is enhanced, the initial probability of
relapse decreases. People who know they may be exposed
to a specific disease can get medication and otherwise pre-
pare for it, increasing the probability that if they become
ill, they will recover, and reducing the probability of re-
lapse, which corresponds to adjusting the forget- and re-
member probability in our model. This might prevent the
occurrence of diseases on a large scale.

The authors would like to thank Laura Ware of the Santa Fe
Institute for type-editing of the manuscript. W.L. would like to
thank Professor Jost of Max-Planck-Institute for Mathematics
in the Sciences for hospitality during his stay at the institute
where part of this work was done. This work was in part sup-
ported by the National Natural Science Foundation of China
(Grant Nos. 70571027, 10647125, 10635020 and 70401020) and
the Ministry of Education of China (Grant No. 306022 and the
“111” project with Grant No. B08033).

References

1. S. Eubank, et al., Nature 429, 180 (2001)
2. P.G. Lind, et al., Phys. Rev. E 76, 036117 (2007)
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